Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Oecologia ; 204(3): 505-515, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38265600

RESUMEN

Megafauna are important seed dispersers because they can disperse large quantities of seeds over long distances. In Hokkaido, Japan, the largest terrestrial animal is the brown bear (Ursus arctos) and other megafauna seed dispersers are lacking. Thus, brown bears are expected to have an important function as seed dispersers in Hokkaido. In this study, we, for the first time, evaluated the seed dispersal function of brown bears in Hokkaido using three fleshy-fruited trees and studied: (1) gut passage time (GPT) in feeding experiments, (2) seed dispersal distance using tracking data of wild bears, and (3) the effect of gut passage and pulp removal on germination rate. Most seeds were defecated intact, and less than 6% were broken. The average GPT without pulp was 3 h and 56 min to 6 h and 13 min, depending on the plant and trial. Each plant's average simulated seed dispersal distance was 202-512 m. The dispersal distance of Actinidia arguta seeds with pulp was significantly longer than those without pulp because of their longer GPT. The germination rate of defecated seeds without pulp was 19-51%, depending on the plant, and was significantly higher or not different comparing with that of seeds with pulp. We concluded that brown bears in Hokkaido are effective seed dispersers. In managing brown bears in Hokkaido, such ecological functions should be considered along with conserving the bear population and reducing human-bear conflicts.


Asunto(s)
Dispersión de Semillas , Ursidae , Animales , Humanos , Japón , Semillas , Frutas , Plantas , Germinación , Conducta Alimentaria
2.
Ecol Evol ; 13(11): e10711, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38034333

RESUMEN

Understanding the influence of non-native herbivores on ecosystems by means of dietary foraging and seed dispersal is important for understanding how non-native species can alter an invaded landscape, yet requires multiple methodologies. In south-eastern Australia, introduced sambar deer (Rusa unicolor) are rapidly expanding in range and placing native ecosystems at risk through browsing and as vectors for seed dispersal. We simultaneously investigated sambar deer dietary composition and seed dispersal using DNA sequencing and germination trials, from faecal pellets collected in alpine and wet forest ecosystems. This allowed us to contrast the dietary impacts of introduced sambar deer in different environments, and to explore the potential for habitat-specific variation in diet. DNA sequencing of the trnL, ITS2 and rbcL gene regions revealed a diverse plant species dietary composition comprising 1003 operational taxonomic units (OTUs). Sambar deer exhibited intermediate feeder behaviours dominated by forbs in alpine and shrubs in wet forest ecosystems. A large proportion of plant OTUs were considered likely to be native, however, the proportion of exotic species in the diet in both ecosystems was greater than would be expected based on the proportion of exotic species in each of the two landscapes. Seed germination trials indicated that sambar deer can disperse a substantial number of native and exotic species in both alpine and wet forest ecosystems. In alpine ecosystems, an individual sambar deer was estimated to disperse on average 816 (±193) seeds per day during the study period, of which 652 (±176) were exotic. Synthesis and applications. Our results suggest that native plant species comprise the majority of sambar deer diets in Australian ecosystems and that the introduced species is dispersing both native and exotic plant species via endozoochory. However, exotic species seedling germination numbers were significantly higher in alpine ecosystems, and given the large daily movements of sambar deer, represents a significant vector for the spread of exotic plant species. Management of native plant species and vegetation communities of conservation significance, or at risk to sambar deer browsing is of high priority, through either the removal of sambar deer or implementation of exclusion-based methods.

3.
Ecol Evol ; 13(11): e10677, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38020707

RESUMEN

Ducks and geese are little studied dispersal vectors for plants lacking a fleshy fruit, and our understanding of the traits associated with these plants is limited. We analyzed 507 faecal samples of mallard (Anas platyrhynchos) and Canada goose (Branta canadensis) from 18 natural and urban wetlands in England, where they are the dominant resident waterfowl. We recovered 930 plant diaspores from 39 taxa representing 18 families, including 28 terrestrial and five aquatic species and four aliens. Mallards had more seeds and seed species per sample than geese, more seeds from barochory and hydrochory syndromes, and seeds that on average were larger and from plants with greater moisture requirements (i.e., more aquatic). Mallards dispersed more plant species than geese in natural habitats. Plant communities and traits dispersed were different between urban (e.g., more achenes) and natural (e.g., more capsules) habitats. Waterfowl can readily spread alien species from urban into natural environments but also allow native terrestrial and aquatic plants to disperse in response to climate heating or other global change. Throughout the temperate regions of the Northern Hemisphere, the mallard is accompanied by a goose (either the Canada goose or the greylag goose) as the most abundant waterfowl in urbanized areas. This combination provides a previously overlooked seed dispersal service for plants with diverse traits.

4.
Front Plant Sci ; 14: 1275622, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023866

RESUMEN

Migratory waterbirds disperse a broad range of angiosperms by endozoochory (seed dispersal via gut passage), especially plants in coastal wetlands. However, there is no previous information about the capacity of seeds to remain in the seed bank after waterbird endozoochory, and very little about how wetland salinity can influence the effect of gut passage on germination. We collected seeds of Juncus subulatus (Juncaceae), Bolboschoenus maritimus, and Schoenoplectus litoralis (Cyperaceae) from Doñana marshes in Spain. All three species are considered to have physiological dormancy. After gut passage following ingestion by ducks, seeds were stored in darkness in solutions with six different conductivities (1, 2, 4, 8, 16, and 32 dSm-1), for periods of 1, 6, or 12 months to simulate presence in a seed bank. After storage, 1800 seeds of each plant species assigned to these treatments were subjected to germination tests in demineralized water, together with 1800 control seeds that had not been ingested before storage. All species germinated readily after storage, with or without gut passage beforehand. Storage time and salinity both had important effects on germinability and time to germination, which differed between control and ingested seeds, and between plant species. After ≥6 months, germinability of Cyperaceae was enhanced by gut passage (≤25% higher than control seeds) at some salinities. Only J. subulatus showed consistently lower germinability after passage (≤30%). Only B. maritimus showed consistently slower germination after passage (≤33%). Salinity effects were more complex after passage, but increasing salinity did not generally have a negative impact on germination of ingested seeds. When compared to additional seeds that had not been stored before germination tests, storage reduced germinability in J. subulatus (≤39% reduction), but increased it in B. maritimus (≤17%) and S. litoralis (≤46%). Seeds dispersed by waterbird endozoochory may be easily incorporated into wetland seed banks, where they can remain halotolerant and delay germination until conditions become suitable. This can benefit wetland plants by increasing rates of long-distance dispersal, gene flow, and establishment of new populations. Avian gut passage can have positive and species-specific effects on germination in plants with persistent seed banks and/or physiological dormancy.

5.
Sci Total Environ ; 905: 167152, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730042

RESUMEN

Sheep function as effective endozoochorous seed vectors in grasslands. Recent laboratory-based studies showed that this important function can be impaired by macrocyclic lactone anthelmintics, which are used to control parasites and enter into the environment mainly via faeces; however, there is a lack of in vivo studies. We conducted a seed-feeding experiment with sheep that included four temperate grassland species from four different families (Achillea ptarmica, Asteraceae; Agrostis capillaris, Poaceae; Dianthus deltoides, Caryophyllaceae; Plantago lanceolata, Plantaginaceae). A series of three feeding trials was carried out after one of two groups of sheep received a single administration of a common oral formulation of the macrocyclic lactone moxidectin. Faeces were collected to determine seedling emergence rate and emergence timing as well as moxidectin concentration via HPLC. Seedling emergence differed significantly between the anthelmintic-treated sheep and the control group. This impact depended on time of seed uptake after anthelmintic administration. Number of emerging seedlings was significantly reduced (27.1 %) when faeces moxidectin concentrations were high (on average 3153 ng g-1; 1 d post treatment) and significantly increased (up to 68.8 %) when moxidectin concentrations were low (≤86 ng g-1; 7, 14 d pt). Mean emergence time was significantly lowered at low moxidectin concentrations. These results demonstrate dose-related effects of deworming on seedling emergence which might affect endozoochory and eventually plant population dynamics in grasslands.


Asunto(s)
Antihelmínticos , Plantones , Humanos , Animales , Ovinos , Pradera , Macrólidos , Antihelmínticos/farmacología , Antihelmínticos/uso terapéutico , Lactonas , Heces
6.
Plant Biol (Stuttg) ; 25(7): 1046-1057, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37703534

RESUMEN

Macrocyclic lactone anthelmintics are widely used to control invertebrate pests in livestock, such as sheep. While anthelmintic effects on non-target animals, such as dung-dwelling insects, are well studied, effects on seed germination are largely unknown. Seeds can come into contact with anthelmintics either during passage through the gastro-intestinal tract of grazing animals or when anthelmintics are excreted with their dung into the environment, which may result in changed germination patterns. We used four commonly applied macrocyclic lactones to assess their effects on germination: moxidectin, ivermectin, abamectin and doramectin as pure substances; moxidectin and ivermectin also in formulated form. We tested these pharmaceuticals on 17 different temperate grassland species from five plant families. Seeds were exposed to three concentrations of macrocyclic lactones (0.1, 1.0 and 10.0 mg·l-1 ) under controlled conditions, and germination was assessed over a 6-week period. From these data, we calculated germination percentage, mean germination time and germination synchrony. Most of the tested species were significantly affected in germination percentage and/or mean germination time by at least one of the tested pharmaceuticals, with formulated moxidectin having the largest impact. In general, the effects found were species- and pharmaceutical-specific. While formulated substances generally reduced germination percentage and increased mean germination time, pure substances increased germination percentage. Synchrony showed less clear patterns in all pharmaceuticals. Although effect size and sign varied between species, our study shows that non-target effects of macrocyclic lactones commonly occur in terrestrial plants. This may impede successful seed exchange between habitats via sheep, and even translate into profound changes to grazed ecosystems.


Asunto(s)
Antihelmínticos , Lactonas , Animales , Ovinos , Lactonas/farmacología , Ivermectina/farmacología , Germinación , Pradera , Ecosistema , Semillas , Antihelmínticos/farmacología , Antihelmínticos/uso terapéutico , Plantas , Preparaciones Farmacéuticas , Heces
7.
Heliyon ; 9(7): e18202, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37539242

RESUMEN

Endozoochory is a substantial vector for seed dispersal and plays an important role in vegetation dynamics, mainly in colonisation processes through seed input to the vegetation and soil seed bank. We investigated the endozoochorous seed input by cattle and sheep on a pasture located in the western region of Burkina Faso. Through germination experiments, we assessed viable seed content of the dung of these grazing animals to estimate their suitability and efficiency for seed dispersal of fodder legumes. Cattle and sheep were daily fed seeds of Sthylosanthes hamata and Aeschynomene histrix, mixed with cotton seed cake. Faeces containing seeds of both legumes were collected 24 h after feeding. One part of faeces samples was spread in buckets of soil for direct germination in the greenhouse to evaluate germinating seed content. To improve pastures, a randomized completed design with 6 replications was conducted with both legumes and phosphorus fertilization (0 and 100 kg/ha of P2O5) and year as experimental factors. Recovery of A. histrix seeds was better than that of S. hamata with cattle (18 and 9%, respectively) compared to sheep. Seed recovered from faeces had higher germination with sheep than cattle. Thus, S. hamata seed recovered from faeces germinated well (12 and 45% with cattle and sheep, respectively, than fresh seeds used as control. However, A. histrix's seeds recovered from faeces germinated less than control (P < 0.001). The findings confirmed that ruminants could be used for targeted legume seed dispersal in natural pastures. A. histrix and S. hamata have high potential for plant biomass and seed production when phosphorus is applied. Seed ingestion by ruminants should be undertaken for improving natural pastures in semi-arid zones as lower cost practice.

8.
Biodivers Data J ; 11: e104079, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37476211

RESUMEN

Background: Seed dispersal is a critical process in plant colonisation and demography. Fruits and seeds can be transported by several vectors (typically animals, wind and water), which may have exerted strong selective pressures on plant's morphological traits. The set of traits that favour dispersal by a specific vector have been historically considered as seed dispersal syndromes. As seed dispersal syndromes have a great potential to predict how seeds move (i.e. the relative importance of the standard mechanisms of seed dispersal), they have attracted the attention of naturalists and researchers for centuries. However, given that observations of actual dispersal events and colonisation are seldom reported, there is still much confusion in current studies failing to properly discriminate between seed dispersal syndromes (i.e. sets of traits that favour a particular mechanism) and actual seed dispersal (i.e. the vector that moves a given seed in one dispersal event). This distinction is important because the presence of any seed dispersal syndrome does not preclude the seed being occasionally dispersed by other non-standard mechanisms (i.e. different from the one predicted). Similarly, the absence of seed dispersal syndromes does not prevent seeds from being dispersed. The correct coding of seed dispersal syndromes thus requires a systematic and evolutive, rather than a phenomenological approach. Unfortunately, such approach has rarely been implemented at a community-level and no comprehensive datasets of seed dispersal syndromes are yet available for any entire flora. New information: This database contains categorisation of the native European flora into eight seed dispersal syndromes. Information for a total of 9,874 species retrieved from the volumes of Flora Europaea were analysed. Earlier versions of this database, which only coded for the presence of four long-distance dispersal syndromes (endozoochorous, epizoochorous, thalassochorous and anemochorous diaspores), were used in four previous studies. Here, we present a fully revised and expanded database, including the presence of four additional short-distance dispersal syndromes (myrmecochorous, vertebrate hoarding, freshwater hydrochorous and ballochorous diaspores), a nomenclatural update for all species and the codification of 416 additional species.Roughly half (51.3%) of the native European flora produce diaspores without traits clearly associated with facilitating seed dispersal. The other half (48.7%) of the European plant species produces diaspores with some specialised traits associated with seed dispersal, most of which (79.9%) with a potential to facilitate long-distance dispersal events. The most common diaspores are those with anemochorous (23.5%), epizoochorous (8.0%), endozoochorous (7.8%), myrmecochorous (7.2%), thalassochorous (2.3%), freshwater dispersal (2.1%), ballochorous (4.6%) and vertebrate hoarding associated traits (0.2%). Two-thirds (66.3%) of the European shrub and tree species have diaspores with some specialisation for biotic seed dispersal.

9.
Ecology ; 104(10): e4132, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37376749

RESUMEN

Herbivores shape plant invasions through impacts on demography and dispersal, yet only demographic mechanisms are well understood. Although herbivores negatively impact demography by definition, they can affect dispersal either negatively (e.g., seed consumption), or positively (e.g., caching). Exploring the nuances of how herbivores influence spatial spread will improve the forecasting of plant movement on the landscape. Here, we aim to understand how herbivores impact how fast plant populations spread through varying impacts on plant demography and dispersal. We strive to determine whether, and under what conditions, we see net positive effects of herbivores, in order to find scenarios where herbivores can help to promote spread. We draw on classic invasion theory to develop a stage-structured integrodifference equation model that incorporates herbivore impacts on plant demography and dispersal. We simulate seven herbivore "syndromes" (combinations of demographic and/or dispersal effects) drawn from the literature to understand how increasing herbivore pressure alters plant spreading speed. We find that herbivores with solely negative effects on plant demography or dispersal always slow plant spreading speed, and that the speed slows monotonically as herbivore pressure increases. However, we also find that plant spreading speed can be hump shaped with respect to herbivore pressure: plants spread faster in the presence of herbivores (for low herbivore pressure) and then slower (for high herbivore pressure). This result is robust, occurring across all syndromes in which herbivores have a positive effect on plant dispersal, and is a sign that the positive effects of herbivores on dispersal can outweigh their negative effects on demography. For all syndromes we find that sufficiently high herbivore pressure results in population collapse. Thus, our findings show that herbivores can speed up or slow down plant spread. These insights allow for a greater understanding of how to slow invasions, facilitate native species recolonization, and shape range shifts with global change.


Asunto(s)
Herbivoria , Plantas , Semillas
10.
Plants (Basel) ; 12(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37050096

RESUMEN

Recent field data suggest that migratory gulls disperse many rice field weeds by gut passage (endozoochory), most of which are dry fruited and widely assumed to have no long-distance dispersal mechanisms, except via human activity. We investigated this mechanism with a feeding experiment, in which seeds of five common rice field weeds (in order of increasing seed size: Juncus bufonius, Cyperus difformis, Polypogon monspeliensis, Amaranthus retroflexus, and the fleshy-fruited Solanum nigrum) were fed to seven individuals of lesser black-backed gulls Larus fuscus held in captivity. We quantified seed survival after collecting faeces at intervals for 33 h after ingestion, then extracting intact seeds and running germination tests, which were also conducted for control seeds. All five species showed high seed survival after gut passage, of >70%. Gut retention times averaged 2-4 h, but maxima exceeded 23 h for all species. Germinability after gut passage was 16-54%, and gut passage accelerated germination in J. bufonius and S. nigrum, but slowed it down in the other species. All species had lower germinability after gut passage compared to control seeds (likely due to stratification prior to the experiment), but the loss of germinability was higher in smaller seeds. There was no evidence that the different dispersal syndromes assigned to the five species (endozoochory, epizoochory or barochory) had any influence on our results. In contrast, mean gut retention time was strongly and positively related to seed size, likely because small seeds pass more quickly from the gizzard into the intestines. Non-classical endozoochory of dry-fruited seeds by waterbirds is a major but overlooked mechanism for potential long-distance dispersal, and more research into this process is likely essential for effective weed management.

11.
Animals (Basel) ; 13(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36978515

RESUMEN

During the last 24 years, the mutualistic interaction between the dead horse arum, Helicodiceros muscivorus, and the Balearic lizard, Podarcis lilfordi, was studied on Aire Island (Balearic Islands, Spain). From a small population of a hundred plants, the dead horse arum expanded extraordinarily throughout the island, reaching the highest known densities of the species and occupying areas of the island where it was not previously present. The current abundance of plants is a direct effect of the frugivorous activity of the Balearic lizard, which is the main, if not the only, effective seed disperser of the plant on Aire Island. However, abiotic factors predominated over biotic factors in driving abundance of plants. Over the years, plant densities varied significantly depending on the aridity of the island, with higher densities recorded in drier years. Lizards' frugivorous activity and dispersal intensity was inversely correlated with annual rainfall. We found higher dispersal intensity in years with lower rainfall. We propose that the years of lower rainfall are those in which there is a lower prey availability. In such years, lizards compensate the shortage of other trophic resources with a more intense consumption of dead horse arum fruits. The mutualistic interaction is therefore asymmetric, since there is a greater influence of the frugivorous activity of the lizards on the plants than of the plants on lizards. It is, in short, a system chronically out of balance.

12.
R Soc Open Sci ; 10(3): 230090, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36968238

RESUMEN

Avian vectors, such as ducks, swans and geese, are important dispersers of plant propagules. Until recently, it was thought that small vegetative propagules were reliant on adherence to vectors and are unlikely to survive passage through the avian digestive tract. Here, we conclusively demonstrate that metabolically active angiosperms can survive passage through the digestive tract of a large-bodied waterbird. In addition, we show that extended periods of air exposure for up to 7 days does not inhibit the survival of plantlets embedded in faecal matter. Following air exposure, plantlets (n = 3000) were recovered from 75 faecal samples of mute swans, Cygnus olor, with the survival of 203 plantlets. The number of recovered and surviving plantlets did not significantly differ among durations of air exposure. For recovered plantlets, the long-term viability and clonal reproduction of two duckweed species, Lemna minor and L. gibba, were confirmed following greater than eight months of growth. These data further amplify the key role of waterbirds as vectors for aquatic plant dispersal and demonstrate the internal transport (i.e. endozoochory) of metabolically active plantlets. These data suggest dispersal of vegetative plant propagules by avian vectors is likely to be a common occurrence, underpinning connectivity, range expansion and invasions of some aquatic plants.

13.
Ecology ; 104(6): e4039, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36960918

RESUMEN

Following a disturbance, dispersal shapes community composition as well as ecosystem structure and function. For fungi, dispersal is often wind or mammal facilitated, but it is unclear whether these pathways are complementary or redundant in the taxa they disperse and the ecosystem functions they provide. Here, we compare the diversity and morphology of fungi dispersed by wind and three rodent species in recently harvested forests using a combination of microscopy and Illumina sequencing. We demonstrate that fungal communities dispersed by wind and small mammals differ in richness and composition. Most wind-dispersed fungi are wood saprotrophs, litter saprotrophs, and plant pathogens, whereas fungi dispersed in mammal scat are primarily mycorrhizal, soil saprotrophs, and unspecified saprotrophs. We note substantial dispersal of truffles and agaricoid mushrooms by small mammals, and dispersal of agaricoid mushrooms, crusts, and polypores by wind. In addition, we find mammal-dispersed spores are larger than wind-dispersed spores. Our findings suggest that wind- and small-mammal-facilitated dispersal are complementary processes and highlight the role of small mammals in dispersing mycorrhizal fungi, particularly following disturbances such as timber harvest.


Asunto(s)
Ecosistema , Micorrizas , Animales , Viento , Bosques , Mamíferos , Roedores , Microbiología del Suelo , Hongos , Suelo , Esporas Fúngicas
15.
Curr Biol ; 33(2): 364-371.e3, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36521493

RESUMEN

Identifying the mechanisms for seed dispersal and persistence of species is a central aim of ecology. Seed dispersal by animals is an essential form of dissemination in many plant communities, including seeds of over 66% of neotropical canopy tree species.1,2 Besides physical dispersal, animals influence seed germination probabilities through scarification, breaking dormancy, and preventing rotting, so plants often invest important resources in attracting them. Orchids are predominantly adapted to wind dispersal, having dust-like seeds that are easily uplifted. Exceptions include bird-,3,4 cricket-,5,6 and mammal-dispersed7 species, featuring fleshy fruits with hard seeds that germinate after passing the animal's digestive system. Given the similarity in fruit and seed morphology, zoochory has also been suggested in Vanilla,8,9,10,11,12,13,14,15 a pantropical genus of 118 species with vine-like growth.16,17,18 We test this prediction through in situ and ex situ experimentation using fruits of Vanilla planifolia, and wild relatives, from which vanillin-a widely used natural aroma and flavoring-is obtained. Seeds from dehiscent fruits are removed by male Euglossini collecting fragrances, a unique case in plants, and female Meliponini bees gathering nest-building materials, a first among monocots. By contrast, mammals, mostly rodents, consume the nutritious indehiscent fruits, passing the seeds up to 18 h after consumption. Protocorm formation in digested and undigested seeds proves that scarification in the gut is not strictly required for germination. Multimodal seed dispersal mechanisms are proven for the first time in Orchidaceae, with ectozoochory and endozoochory playing crucial roles in the unusually broad distribution of Vanilla.


Asunto(s)
Dispersión de Semillas , Animales , Semillas , Frutas/anatomía & histología , Plantas , Germinación , Conducta Alimentaria , Mamíferos
16.
Biol Rev Camb Philos Soc ; 97(5): 1908-1929, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35770842

RESUMEN

Conceptual gaps and imprecise terms and definitions may obscure the breadth of plant-animal dispersal relationships involved in directed dispersal. The term 'directed' indicates predictable delivery to favourable microsites. However, directed dispersal was initially considered uncommon in diffuse mutualisms (i.e. those involving many species), partly because plants rarely influence post-removal propagule fate without specialized adaptations. This rationale implies that donor plants play an active role in directed dispersal by manipulating vector behaviour after propagule removal. However, even in most classic examples of directed dispersal, participating plants do not influence animal behaviour after propagule removal. Instead, such plants may take advantage of vector attraction to favourable plant microsites, indicating a need to expand upon current interpretations of directed dispersal. We contend that directed dispersal can emerge whenever propagules are disproportionately delivered to favourable microsites as a result of predictably skewed vector behaviour. Thus, we propose distinguishing active and passive forms of directed dispersal. In active directed dispersal, the donor plant achieves disproportionate arrival to favourable microsites by influencing vector behaviour after propagule removal. By contrast, passive directed dispersal occurs when the donor plant takes advantage of vector behaviour to arrive at favourable microsites. Whereas predictable post-removal vector behaviour is dictated by characteristics of the donor plant in active directed dispersal, characteristics of the destination dictate predictable post-removal vector behaviour in passive directed dispersal. Importantly, this passive form of directed dispersal may emerge in more plant-animal dispersal relationships because specialized adaptations in donor plants that influence post-removal vector behaviour are not required. We explore the occurrence and consequences of passive directed dispersal using the unifying generalized gravity model of dispersal. This model successfully describes vectored dispersal by incorporating the influence of the environment (i.e. attractiveness of microsites) on vector movement. When applying gravity models to dispersal, the three components of Newton's gravity equation (i.e. gravitational force, object mass, and distance between centres of mass) become analogous to propagules moving towards a location based on characteristics of the donor plant, the destination, and relocation processes. The generalized gravity model predicts passive directed dispersal in plant-animal dispersal relationships when (i) animal vectors are predictably attracted to specific destinations, (ii) animal vectors disproportionately disperse propagules to those destinations, and (iii) those destinations are also favourable microsites for the dispersed plants. Our literature search produced evidence for these three conditions broadly, and we identified 13 distinct scenarios where passive directed dispersal likely occurs because vector behaviour is predictably skewed towards favourable microsites. We discuss the wide applicability of passive directed dispersal to plant-animal mutualisms and provide new insights into the vulnerability of those mutualisms to global change.


Asunto(s)
Plantas , Dispersión de Semillas , Distribución Animal , Animales , Dispersión de las Plantas , Simbiosis
17.
Biology (Basel) ; 11(5)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35625357

RESUMEN

Seed dispersal is an important ecological process in wetland ecosystems and helps maintain community structure and ecosystem biodiversity. Waterbird-mediated endozoochory is an effective and feasible dispersal mechanism for wetland plants; however, the influence of vectors and seed traits on this mechanism remains unclear. To investigate the effects of vector species and seed traits (length and lignin) on retention time, retrieval and germination of gut-surviving seeds, we fed Baikal teals (Anas formosa) and green-winged teals (Anas crecca) eight common plant seeds (Polygonum aviculare, Rumex dentatus, Polygonum orientale, Vallisneria natans, Ranunculus polii, Polygonum hydropiper, Carex cinerascen and Euphrasia pectinata) in the Shengjin Lake wetland (a Ramsar site). We collected fecal samples at intervals of 2-6 h for 36 h, and found that the percentage of recovered seeds differed significantly among teal and plant species (3%~30%); 94% of viable seeds were recovered within 12 h after feeding. Moreover, the germination rate of the recovered seeds (25%~56%) was higher than that of the control. The seed retention time was affected by seed lignin and disperser species; higher lignin made digestion difficult with higher retrieval. Smaller seeds passed through the guts but had no significant effect on recovered seeds. Seed length and disperser species showed no significant correlation with germination. These findings suggested endozoochory by dabbling ducks as an effective wetland seed dispersal mechanism.

19.
Acta biol. colomb ; 27(1): 131-134, ene.-abr. 2022. tab
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1360058

RESUMEN

RESUMEN La dispersión de semillas por reptiles (saurocoría) ha recibido atención recientemente y se ha reportado el consumo de frutos y semillas en cocodrilianos, actuando como potenciales dispersores de semillas. Evaluamos si la saurocoría en Crocodylus actus y C. moreletii afecta la viabilidad de tres especies de plantas Delonixregia, Inga sp. y Citrullus lanatus. Se Utilizaron tres individuos juveniles de cada especie de cocodrilo y se alimentaron con 22 semillas por especie de planta, para un total de 66 semillas por recinto (132 para ambos). Las semillas se mezclaron con la dieta habitual cada semana, las semillas no consumidas y las excretadas se recolectaron y sembraron en suelo tratado con composta para evaluar la tasa de germinación relativa. Un total de 99 semillas fueron consumidas pero solo se recuperaron de las heces 14 semillas de C. lanatus, y germinando solo una de ellas (7, 14 %) con respecto al 50 % en el grupo control. Los resultados indican que la saurocoría de C. acutus y C. moreletii tiene un efecto negativo sobre la viabilidad de las semillas de las especies vegetales estudiadas, concordando con otros estudios realizados en diferentes especies.


ABSTRACT Seed dispersal by reptiles (saurochory) has recently received attention, and the consumption of fruits and seeds has been reported in crocodilians despite being mainly carnivores, acting as potential seed dispersers. We evaluate whether saurochory by Crocodylus acutus and C. moreletii affect the seed viability of three species of plants (Delonix regia, Inga sp., and Citrullus lanatus). We performed feeding trials, using three juvenile individuals of each species of crocodile, and fed them 22 seeds per plant species for a total of 66 seeds per enclosure (132 for both species). Seeds were combined with the usual diet each week. The unconsumed and excreted seeds were collected and planted in soil treated with compost to evaluate the relative germination rate. A total of 99 seeds were consumed, of which only 14 seeds of C. lanatus were recovered from the faeces, and only one of those germinated (7.14 %) with respect to 50 % in the control group. The results indicate that saurochory by C. acutus and C. moreletii has a negative effect on seed viability and germination of the plant species studied, as found in other studies using different species.

20.
Adv Parasitol ; 115: 45-170, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35249663

RESUMEN

The passive dispersal of non-mobile organisms by vertebrates (zoochory) is a common mechanism used to explain their often widespread distribution. Transport occurs either internally via the vertebrate digestive tract (endozoochory), or externally be adhering to skin, feathers or fur (ectozoochory), and its success is due to both physiological and ecological factors associated with the disseminating 'hosting' animal. Helminth eggs and larvae are generally non-mobile stages that are largely dependent on the movement of another animal, typically a host, for geographical dissemination. Studies on the zoochory of helminths by vertebrates are extensive and particularly long-standing, stretching back to the 19th century, although this literature is often overlooked when considering the biogeography of parasites. This review assesses the potential of helminths to be dispersed passively by zoochory examining evidence from both laboratory and field studies. The physiological dynamics of the vertebrate intestines and skin surface as hostile environments, as well as the characteristics of eggs and larvae which may facilitate successful transport are evaluated. The various mechanisms of helminth endo- and ectozoochory are presented and the likelihood of long-distance dispersal determined. It is concluded that zoochory is a potentially important means of disseminating parasites.


Asunto(s)
Helmintos , Parásitos , Animales , Helmintos/fisiología , Larva , Vertebrados/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...